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We investigate the spatiotemporal dynamics of a lattice of coupled chaotic maps whose coupling connec-
tions are dynamically rewired to random sites with probability p; namely, at any instance of time, with
probability p a regular link is switched to a random one. In a range of weak coupling, where spatiotemporal
chaos exists for regular lattices �i.e., for p=0�, we find that p�0 yields synchronized periodic orbits. Further,
we observe that this regularity occurs over a window of p values, beyond which the basin of attraction of the
synchronized cycle shrinks to zero. Thus we have evidence of an optimal range of randomness in coupling
connections, where spatiotemporal regularity is efficiently obtained. This is in contrast to the commonly
observed monotonic increase of synchronization with increasing p, as seen, for instance, in the strong-coupling
regime of the very same system.
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I. INTRODUCTION

The dynamics of spatially extended systems has been a
focus of intense research activity in the past two decades. In
recent years it has become evident that modeling large inter-
active systems by finite-dimensional lattices on the one hand
and fully random networks on the other is inadequate, as
various networks, ranging from collaborations of scientists to
metabolic networks, do not to fit in either paradigm �1�.
Some alternate scenarios have been suggested, such as the
small-world network �2�. Here one starts with a regular struc-
ture on a lattice—for instance, nearest-neighbor interactions.
Then each regular link from a site is rewired randomly with
probability p. This model is proposed to mimic real-life situ-
ations in which nonlocal connections exist along with pre-
dominantly local connections.

There is much evidence that random nonlocal connec-
tions, even in a small fraction, significantly affect geometri-
cal properties, like the characteristic path length �3�. How-
ever, its implications for dynamical properties are still
unclear and even conflicting. While the dynamics of coupled
oscillators and coupled maps on regular lattices has been
extensively investigated �4�, there have been far fewer stud-
ies on the spatiotemporal features of nonlinear elements on
more general network topologies �5,6�.

Most existing case studies of coupled networks of dy-
namical elements indicate that features, such as degree of
synchronization, vary monotonically with p. That is, it is
observed that most dynamical properties interpolate between
the limits of regular and random connections without in any
sense being “optimal” or more pronounced at some interme-
diate value of p.

In this paper, however, we will provide evidence of a
system where there exists a window of randomness where
one obtains special dynamical features which cannot be an-
ticipated from a simple interpolation between the regular and
random limits. In particular, we will show the pronounced
enhancement of spatiotemporal order in the system in an
intermediate window of rewiring probability p. Our observa-
tions are markedly distinct from the commonly observed
monotonic dependence of synchronization properties on p, as
seen, for instance, in the strong-coupling regime of the very
same system �6�.

II. MODEL

Specifically we consider a one-dimensional ring of
coupled logistic maps. The sites are denoted by integers i
=1, . . . ,N, where N is the linear size of the lattice. On each
site is defined a continuous-state variable denoted by xn�i�,
which corresponds to the physical variable of interest. The
evolution of this lattice, under standard interactions with the
nearest neighbors on either side, in discrete time n, is given
by

xn+1�i� = �1 − ��f„xn�i�… + ��/2��xn�i + 1� + xn�i − 1�� . �1�

The strength of coupling is given by �. The local on-site map
is chosen to be the fully chaotic logistic map, f�x�=4x
�1−x�, as this map has widespread relevance as a prototype
of low-dimensional chaos.

Now we will consider the above system with its coupling
connections rewired randomly in varying degrees and try to
determine what dynamical properties are significantly af-
fected by the way connections are made between elements.
In our study, at every update we will connect a site with
probability p to randomly chosen sites and with probability
1− p to nearest neighbors. That is, with probability p the
dynamical equations of the system are
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xn+1�i� = �1 − ��f„xn�i�… + ��/2��xn��� + xn���� , �2�

where � and � are random integers drawn from a uniform
distribution in the interval �1:N�. With probability 1− p the
dynamical equation of the nodes is given by Eq. �1�. Notice
that in the graph of the coupling connections, the number of
edges of each vertex is unaltered by the rewiring �as opposed
to certain models with “add-on” random links�.

So at every instant a fraction p of randomly chosen
nearest-neighbor links are replaced by random links. The
case of p=0 corresponds to the usual nearest-neighbor inter-
action, while p=1 corresponds to completely random
coupling.

We would like to underscore that the random connections
are dynamic here, as the random links are switched around at
every update. This is in contrast to most studies which con-
sider static (quenched) random connections. Also notice that
we switch the random links keeping all the geometric prop-
erties, such as clustering coefficient and mean path length,
the same at all instants of time.

III. EMERGENCE OF SYNCHRONIZED CYCLES
FROM SPATIOTEMPORAL CHAOS

We will now present numerical evidence that random re-
wiring has a pronounced effect on spatiotemporal order. The
numerical results here have been obtained by sampling a
large set of random initial conditions ��104� and with lattice
sizes ranging from 50 to 1000.

Figure 1 displays the spatiotemporal state of the network,
xn�i�, i=1, . . . ,N, with respect to coupling strength �, for the
case of regular nearest-neighbor interactions �i.e., p=0� and
for the case of random coupling with probability p=0.19 and
p=0.6. It is clearly seen that the standard nearest-neighbor
coupling does not yield regularity anywhere in the entire
coupling range, while randomly rewiring with small prob-
ability p=0.19 creates a window in parameter space where
synchronized cycles gain stability. So dynamic random cou-
pling induces spatial order and, more remarkably, temporal
order as well �7�.

It is evident that different periodicities of the synchro-
nized cycles are obtained under different coupling strengths,
in the window of synchronization. Interestingly, however,
when p is large this window of complete spatiotemporal
regularity is lost again �see Figs. 1�c� and 2�.

In order to quantify this phenomenon, we find the fraction
of random initial conditions that get synchronized �after long
transience�. This provides a measure of the size of the basin
of attraction of the synchronized state, denoted by B �see Fig.
3�. When B=1 we obtain a global attractor for the synchro-
nized cycles.

Figure 4 shows the synchronized basin size B with respect
to rewiring probability p for different coupling strengths. It is
clearly evident from the figure that for the regular lattice
limit of p=0, the synchronized basin size is close to zero. As
p�0 the basin for the synchronized state increases rapidly.
For instance, for p=0.01 in Fig. 4, the synchronized state is
the global attractor of the dynamics—i.e., B=1. However, as
p exceeds an optimal window, the basin size decreases rap-

FIG. 1. Bifurcation diagram showing the state of the lattice
xn�i�, i=1, . . . ,N �N=50�, over n=1, . . . ,25, with respect to cou-
pling strength �, for �a� p=0, �b� p=0.19, and �c� p=0.6. The
synchronized 2- and 4-cycles are clearly evident in �b�, but not in
�a� or �c�.

(b)

(a)

FIG. 2. Bifurcation diagram showing the state of the lattice
xn�i�, i=1, . . . ,N �N=50�, over n=1, . . . ,25, with respect to rewir-
ing probability p, for coupling strengths �a� �=0.18 and �b� �=0.2.
The synchronized 4- and 2-cycles are clearly evident in �a� and �b�,
respectively. Here transience time is 105.
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idly, becoming zero again for high p. Thus there exists a
range of p values where synchronized cycles gain stability.
This observation is quantified in Fig. 5 which gives the range
of rewiring probability, R, over which B=1 for different cou-
pling strengths.

It is evident then that there is a nonmonotonic enhance-
ment of synchronization with increasing randomness in cou-
pling connections and synchronization is most enhanced in
some window of p values. This is in sharp contrast to the
monotonic increase in synchronization with increasing ran-
domness in connectivity in the strong-coupling regime in the
same system.

Note that the mean path length L drops rapidly to a small
value as p increases from p=0 to p�1 /N. So the onset of
regular behavior �at p→0 for large N� appears to be a con-
sequence of small L. However, L quickly saturates to the
limiting value, and so the existence of a window of regularity
in p space cannot be determined by L alone.

IV. EFFICIENCY OF SYNCHRONIZATION

We calculate the average time taken for systems with ran-
dom initial conditions to synchronize and denote this as �T	.
This quantity, which is a measure of the efficiency of syn-
chronization, is displayed in Figs. 6 and 7.

It is evident from Fig. 6 that �T	 first decreases slightly as
p increases and then very sharply rises, by orders of magni-
tude, especially for larger lattices. It is clear then that syn-
chronization is most efficient in some range of low p values.
So in order to obtain fast and reliable synchronization it is a
good strategy to choose low p, as this ensures a global at-
tractor for the synchronized cycles, as well as a fast ap-
proach to the synchronized state from a random initial state.

As a consequence of the above, the size of the basin of
attraction for the synchronized cycles, B, depends on the
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FIG. 3. Size of the basin of attraction of the synchronized cycles
as a density plot in the space of coupling strength � and random
rewiring probability p for a system of size 100. Here transience is
104. Note that the grayscale in the figure shows the size of the basin
of attraction B, ranging from white denoting B=0 to black denoting
B=1.
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FIG. 4. Size of the basin of attraction of the synchronized state
vs rewiring probability p for a system of size 100 for coupling
strengths �a� �=0.16, �b� �=0.19, and �c� �=0.20. Here transience is
5�105.
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FIG. 5. Range of rewiring probability R, which yields a global
attractor �B=1� versus coupling strength �. Here system size is 100
and transience is 104.
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FIG. 6. Average time required to reach synchronization �T	 vs
rewiring probability p for coupling strength �=0.19 for system sizes
N=25,50,100. The synchronized state is a global attractor for the
system for the values of p displayed here.
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allowed transience. Figure 7 shows the increase in the basin
B as transience is increased. However, note that this increase
is very slow, and increasing transience by two orders of mag-
nitude changes the global attractor width in p space by a
small amount.

Caveat: it appears possible, from the above observations,
that in the limit of T→� a synchronized state may be
reached for larger lattices as well. But it should be under-
scored that transience is always finite, and it is indeed very
pertinent to know what generically happens in the limit of
finite, but large ��O�N2��, transience, as is the case for the
studies in this paper.

V. DISCUSSION

For regular coupling, standard linear stability analysis
yields a window of stability in coupling parameter space for
the 2- and 4-cycles, coinciding with that observed in Fig.
1�b�. However, only initial states very close to the synchro-
nized state are attracted to it, and so the basin of attraction of
the synchronized cycle is vanishingly small for p=0 �8�. In
fact, from generic random initial conditions here, one obtains
a spatial state with domains of approximate synchronization,
separated by regions of irregular “kinks.”

Now such separated domains will not be stable under ran-
dom links, as the random �nonlocal� connections will cross-
couple such domains, leading to the formation of larger do-
mains. A shorter mean path length L aids this trend, as
different parts of the system get coupled. In fact, the only
steady state possible under random coupling is one where all
xn�i� are equal; namely, the system is spatially synchronized.
So a small fraction of random links eliminates the kinks in
the spatial profile.

However, there is also a countereffect. The stability of the
local domains is aided by larger clustering coefficients C. So
increasing p, giving rise to smaller clustering coefficients,
has a destabilizing influence. So there is a competition be-
tween local effects dictated by C and global effects dictated
by L, giving rise to this interesting phenomenon.

In summary, we have investigated the spatiotemporal dy-
namics of a network of coupled chaotic logistic maps, with
varying degrees of randomness in coupling connections. We
find a window in coupling parameter space, in the weak-
coupling regime, where random rewiring induces spatiotem-
poral order. Interestingly the basin of attraction for the syn-
chronized cycles varies nonmonotonically with rewiring
probability p. As p is increased, the basin of attraction of the
synchronized state rapidly increases. At an intermediate
�small� value of p the synchronized state becomes the global
attractor of the system with �almost� all initial conditions
being attracted to the synchronized state. However, interest-
ingly, as p is further increased, the basin of attraction of the
synchronized state shrinks to zero again. Thus we have
strong evidence of the pronounced enhancement of spa-
tiotemporal order in an intermediate window of p. This is in
marked contrast to the monotonic increase in synchroniza-
tion with increasing randomness in connectivity, observed in
the strong-coupling regime of the same system.
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FIG. 7. Size of the basin of attraction of the synchronized state
B vs rewiring probability p for coupling strength �=0.19 for a sys-
tem of size 100 for maximum allowed transience equal to �a� 5
�104, �b� 5�105, and �c� 5�106.
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